Isometry groups of combinatorial codes
نویسنده
چکیده
Two isometry groups of combinatorial codes are described: the group of automorphisms and the group of monomial automorphisms, which is the group of those automorphisms that extend to monomial maps. Unlike the case of classical linear codes, where these groups are the same, it is shown that for combinatorial codes the groups can be arbitrary different. Particularly, there exist codes with the full automorphism group and the trivial monomial automorphism group. In the paper the two groups are characterized and codes with predefined isometry groups are constructed.
منابع مشابه
Random Generation of Linear Codes
Isometry classes of linear codes can be expressed as orbits under the group action of a wreath product. Some combinatorial and algebraic methods are discussed which can be applied for generating linear codes distributed uniformly at random over all isometry classes.
متن کاملIsometry and automorphisms of constant dimension codes
We define linear and semilinear isometry for general subspace codes, used for random network coding. Furthermore, some results on isometry classes and automorphism groups of known constant dimension code constructions are derived.
متن کاملIsometry Classes of Indecomposable Linear Codes
In the constructive theory of linear codes, we can restrict attention to the isometry classes of indecomposable codes, as it was shown by Slepian. We describe these classes as orbits and we demonstrate how they can be enumerated using cycle index polynomials and the tools already incorporated in SYMMETRICA, a computer algebra package devoted to representation theory and combinatorics of symmetr...
متن کاملQuaternionic and Poisson-Lie structures in 3d gravity: the cosmological constant as deformation parameter
Each of the local isometry groups arising in 3d gravity can be viewed as the group of unit (split) quaternions over a ring which depends on the cosmological constant. In this paper we explain and prove this statement, and use it as a unifying framework for studying Poisson structures associated with the local isometry groups. We show that, in all cases except for Euclidean signature with positi...
متن کاملThe automorphism groups of linear codes and canonical representatives of their semilinear isometry classes
The main aim of the classification of linear codes is the evaluation of complete lists of representatives of the isometry classes. These classes are mostly defined with respect to linear isometry, but it is well known that there is also the more general definition of semilinear isometry taking the field automorphisms into account. This notion leads to bigger classes so the data becomes smaller....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 57 شماره
صفحات -
تاریخ انتشار 2017